论文标题

深度学习的面部表情识别

Facial Expression Recognition with Deep Learning

论文作者

Khanzada, Amil, Bai, Charles, Celepcikay, Ferhat Turker

论文摘要

人们交流的最普遍的方式之一是通过面部表情。在本文中,我们进行了深入的潜水,实施了多个深度学习模型,以实现面部表达识别(FER)。我们的目标是双重的:我们的目标不仅是为了最大程度地提高准确性,还要将我们的结果应用于现实世界。通过利用最近的研究中的许多技术,我们证明了FER2013测试集的最新精度为75.8%,表现优于所有现有出版物。此外,我们展示了一个移动网络应用程序,该应用程序可以实时运行我们的FER模型。

One of the most universal ways that people communicate is through facial expressions. In this paper, we take a deep dive, implementing multiple deep learning models for facial expression recognition (FER). Our goals are twofold: we aim not only to maximize accuracy, but also to apply our results to the real-world. By leveraging numerous techniques from recent research, we demonstrate a state-of-the-art 75.8% accuracy on the FER2013 test set, outperforming all existing publications. Additionally, we showcase a mobile web app which runs our FER models on-device in real time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源