论文标题

距离的复杂性:公制空间和Banach空间之间距离的降低

Complexity of distances: Reductions of distances between metric and Banach spaces

论文作者

Cúth, Marek, Doucha, Michal, Kurka, Ondřej

论文摘要

我们表明,与公制几何和功能分析的所有标准距离,例如Gromov-Hausdorff距离,Banach-Mazur距离,Kadets距离,Lipschitz距离,净距离和Hausdorff-lipschitz距离都具有相同的复杂性,并且可以在精确定义的方式中彼此降低。 这是根据描述性集理论来完成的,是作者在\ emph {距离的复杂性:广义分析等效关系理论}中发起的较大研究计划的一部分。但是,该论文也针对Banach空间的公制几何形状和几何形状的专家。

We show that all the standard distances from metric geometry and functional analysis, such as Gromov-Hausdorff distance, Banach-Mazur distance, Kadets distance, Lipschitz distance, Net distance, and Hausdorff-Lipschitz distance have all the same complexity and are reducible to each other in a precisely defined way. This is done in terms of descriptive set theory and is a part of a larger research program initiated by the authors in \emph{Complexity of distances: Theory of generalized analytic equivalence relations}. The paper is however targeted also to specialists in metric geometry and geometry of Banach spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源