论文标题

整个功能的模量的对数,作为在小型集合外的次谐波功能的少数人

The Logarithm of the Modulus of an Entire Function as a Minorant for a Subharmonic Function outside a Small Exceptional Set

论文作者

Khabibullin, Bulat N.

论文摘要

令$ u \ not \ equiv - \ infty $为复杂平面$ \ mathbb c $上的次谐波函数。 In 2016, we obtained a result on the existence of an entire function $f\neq 0$ satisfying the estimate $\log|f|\leq {\sf B}_u$ on $\mathbb C$, where functions ${\sf B}_u$ are integral averages of $u$ for rapidly shrinking disks as it approaches infinity.如果$ u $是有限的订单,我们将使用$ \ log | f | \ leq u $提供另一个等效版本。

Let $u\not\equiv -\infty$ be a subharmonic function on the complex plane $\mathbb C$. In 2016, we obtained a result on the existence of an entire function $f\neq 0$ satisfying the estimate $\log|f|\leq {\sf B}_u$ on $\mathbb C$, where functions ${\sf B}_u$ are integral averages of $u$ for rapidly shrinking disks as it approaches infinity. We give another equivalent version of this result with $\log |f|\leq u$ outside a very small exceptional set if $u$ is of finite order.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源