论文标题

分层张量环完成

Hierarchical Tensor Ring Completion

论文作者

Ahad, Abdul, Long, Zhen, Zhu, Ce, Liu, Yipeng

论文摘要

张量完成可以从其部分观察到的条目中估算高阶数据的缺失值。最近的作品表明,低等级张量环近似是解决张量完成问题的最强大的工具之一。但是,现有的算法需要预定义的张量环等级,在实践中可能很难确定。为了解决这个问题,我们提出了一个分层张量环分解,以实现更紧凑的表示。我们使用标准张量环将张量分解为第一层的几个三阶子张量,并且每个子张量通过第二层中的张量奇异值分解(T-SVD)进一步分解。在基于提出的分解的低级张量完成中,三阶核心张量中的零元素在第二层中修剪,这有助于自动确定张量环秩。为了进一步提高恢复性能,我们使用总变化来利用当地的平滑度数据结构。乘数的交替方向方法可以将优化模型划分为几个子问题,并且每个子问题都可以有效地解决。关于颜色图像和高光谱图像的数值实验表明,就恢复精度而言,所提出的算法优于最先进的算法。

Tensor completion can estimate missing values of a high-order data from its partially observed entries. Recent works show that low rank tensor ring approximation is one of the most powerful tools to solve tensor completion problem. However, existing algorithms need predefined tensor ring rank which may be hard to determine in practice. To address the issue, we propose a hierarchical tensor ring decomposition for more compact representation. We use the standard tensor ring to decompose a tensor into several 3-order sub-tensors in the first layer, and each sub-tensor is further factorized by tensor singular value decomposition (t-SVD) in the second layer. In the low rank tensor completion based on the proposed decomposition, the zero elements in the 3-order core tensor are pruned in the second layer, which helps to automatically determinate the tensor ring rank. To further enhance the recovery performance, we use total variation to exploit the locally piece-wise smoothness data structure. The alternating direction method of multiplier can divide the optimization model into several subproblems, and each one can be solved efficiently. Numerical experiments on color images and hyperspectral images demonstrate that the proposed algorithm outperforms state-of-the-arts ones in terms of recovery accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源