论文标题
关于真实的规律性属性的分配
On the sepration of regularity properties of the reals
论文作者
论文摘要
我们提出了一个模型,其中ω_1无法通过REALS无法访问,所有集合的银可测量性都可以容纳,但是Miller和Lebesgue的可测量性失败了某些集合。这有助于Shelah在1980年代开始的一系列研究,最近由Schrittesser和Friedman继续进行,讲述了对实际线的不同规律性属性的分离。
We present a model where ω_1 is inaccessible by reals, Silver measurability holds for all sets but Miller and Lebesgue measurability fail for some sets. This contributes to a line of research started by Shelah in the 1980s and more recently continued by Schrittesser and Friedman, regarding the separation of different notions of regularity properties of the real line.