论文标题
一般的非Archimedean领域的渐近fubini-study操作员
The asymptotic Fubini-Study operator over general non-Archimedean fields
论文作者
论文摘要
在投影$ \ mathbb {k} $ - 品种$ x $上方的宽线捆绑包$ l $,带有$ \ mathbb {k} $的非架构的非一切像,我们研究了非Archimedean Metrics on $ L $ l $ l $ l $ l $ l $ l $ l $ lakimedean copteriplicative coss of Subniplicative soffication fos youssultiplicational cormultiplicational of Sumpultiplicate我们表明,在一个相当普遍的情况下,相应的渐近fubini-study操作员在有界分级规范的等价类别与有限的Plurisubharmonic指标之间产生一对一的对应关系,这些指标可从下面进行正常化。这概括了boucksom-jonsson的结果,其中在琐碎的情况下研究了这个问题。
Given an ample line bundle $L$ over a projective $\mathbb{K}$-variety $X$, with $\mathbb{K}$ a non-Archimedean field, we study limits of non-Archimedean metrics on $L$ associated to submultiplicative sequences of norms on the graded pieces of the section ring $R(X,L)$. We show that in a rather general case, the corresponding asymptotic Fubini-Study operator yields a one-to-one correspondence between equivalence classes of bounded graded norms and bounded plurisubharmonic metrics that are regularizable from below. This generalizes results of Boucksom-Jonsson where this problem has been studied in the trivially valued case.