论文标题
基于数据的未知双线性系统的稳定,可保证吸引吸引力的盆地
Data-based stabilization of unknown bilinear systems with guaranteed basin of attraction
论文作者
论文摘要
在直接设计非线性系统的数据驱动控制器时,我们的目标是为了表明,对于未知的离散时间双线性系统,在离线开环实验中收集的数据如何使我们能够设计一个反馈控制器并提供保证的对其吸引力的层次的不受欢迎。两者都可以通过求解固定标量参数的线性矩阵不等式来获得,并可能在该参数的不同值上迭代。将这种基于数据的方法的结果与理想情况进行了比较。
Motivated by the goal of having a building block in the direct design of data-driven controllers for nonlinear systems, we show how, for an unknown discrete-time bilinear system, the data collected in an offline open-loop experiment enable us to design a feedback controller and provide a guaranteed under-approximation of its basin of attraction. Both can be obtained by solving a linear matrix inequality for a fixed scalar parameter, and possibly iterating on different values of that parameter. The results of this data-based approach are compared with the ideal case when the model is known perfectly.