论文标题
maschke type for hopf monoids的定理
Maschke type theorems for Hopf monoids
论文作者
论文摘要
我们研究了单叶植物中天然frobenius映射单核的综合内hom类中的HOPF单体积分。我们证明了两种Maschke型定理,分别将基本单体和共核的可分离性与归一化积分的存在相关。它涵盖了霍普夫·莫尼德(Hopf Monoids)提供的示例,构成了编织的单体类别,较弱的HOPF代数,Hopf代数代数代数代数,HOPF MONAD在自动型单体类别和HOPF类别上。
We study integrals of Hopf monoids in duoidal endohom categories of naturally Frobenius map monoidales in monoidal bicategories. We prove two Maschke type theorems, relating the separability of the underlying monoid and comonoid, respectively, to the existence of normalized integrals. It covers the examples provided by Hopf monoids in braided monoidal categories, weak Hopf algebras, Hopf algebroids over central base algebras, Hopf monads on autonomous monoidal categories and Hopf categories.