论文标题

从基于物理的模型到通过可解释的机器学习的预测数字双胞胎

From Physics-Based Models to Predictive Digital Twins via Interpretable Machine Learning

论文作者

Kapteyn, Michael G., Willcox, Karen E.

论文摘要

这项工作开发了一种方法,用于从代表各种资产状态的基于物理模型的库中创建数据驱动的数字双胞胎。使用可解释的机器学习对数字双胞胎进行更新。具体来说,我们使用最佳树---最近开发的可扩展机器学习方法---训练可解释的数据驱动分类器。分类器的培训数据是使用基于物理学库求解的模拟方案来离线生成的。可以使用实验或其他历史数据进一步增强这些数据。在操作中,分类器使用来自资产的观察数据来推断模型库中的哪些基于物理的模型是更新的数字双胞胎的最佳候选者。通过开发12英尺翼型无人机的结构数字双胞胎来证明这种方法。该数字双胞胎是由在一系列结构状态下的车辆降低型号的库中构建的。数据驱动的数字双胞胎对结构性损坏或退化进行了动态更新,并使飞机能够相应地重新启动安全任务。在这种情况下,我们研究了最佳树分类器的性能,并演示其可解释性如何从稀疏的传感器测量中解释结构评估,并为最佳传感器放置提供了信息。

This work develops a methodology for creating a data-driven digital twin from a library of physics-based models representing various asset states. The digital twin is updated using interpretable machine learning. Specifically, we use optimal trees---a recently developed scalable machine learning method---to train an interpretable data-driven classifier. Training data for the classifier are generated offline using simulated scenarios solved by the library of physics-based models. These data can be further augmented using experimental or other historical data. In operation, the classifier uses observational data from the asset to infer which physics-based models in the model library are the best candidates for the updated digital twin. The approach is demonstrated through the development of a structural digital twin for a 12ft wingspan unmanned aerial vehicle. This digital twin is built from a library of reduced-order models of the vehicle in a range of structural states. The data-driven digital twin dynamically updates in response to structural damage or degradation and enables the aircraft to replan a safe mission accordingly. Within this context, we study the performance of the optimal tree classifiers and demonstrate how their interpretability enables explainable structural assessments from sparse sensor measurements, and also informs optimal sensor placement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源