论文标题

使用GAN提高室内人类活动识别的准确性

Using GAN to Enhance the Accuracy of Indoor Human Activity Recognition

论文作者

Moshiri, Parisa Fard, Navidan, Hojjat, Shahbazian, Reza, Ghorashi, Seyed Ali, Windridge, David

论文摘要

室内人类活动识别(HAR)探讨了人体运动与反射的WiFi信号之间的相关性,以对不同的活动进行分类。通过分析WiFi信号模式,尤其是通道状态信息(CSI)的动力学,可以区分不同的活动。从时间和设备的角度来看,收集CSI数据都很昂贵。在本文中,我们使用合成数据来减少对实际测量CSI的需求。我们为基于CSI的活动识别系统提供了一种半监督的学习方法,其中使用长期的短期记忆(LSTM)来学习特征并识别七个不同的动作。我们将主成分分析(PCA)应用于CSI振幅数据,而短期傅立叶变换(STFT)提取了频域中的特征。首先,我们使用完全原始的CSI数据训练LSTM网络,这需要更多的处理时间。为此,我们旨在通过将50%的原始数据与生成对抗网络(GAN)结合使用来生成数据。我们的实验结果证实,该模型可以将分类精度提高3.4%,并在考虑的情况下将日志损失降低了几乎16%。

Indoor human activity recognition (HAR) explores the correlation between human body movements and the reflected WiFi signals to classify different activities. By analyzing WiFi signal patterns, especially the dynamics of channel state information (CSI), different activities can be distinguished. Gathering CSI data is expensive both from the timing and equipment perspective. In this paper, we use synthetic data to reduce the need for real measured CSI. We present a semi-supervised learning method for CSI-based activity recognition systems in which long short-term memory (LSTM) is employed to learn features and recognize seven different actions. We apply principal component analysis (PCA) on CSI amplitude data, while short-time Fourier transform (STFT) extracts the features in the frequency domain. At first, we train the LSTM network with entirely raw CSI data, which takes much more processing time. To this end, we aim to generate data by using 50% of raw data in conjunction with a generative adversarial network (GAN). Our experimental results confirm that this model can increase classification accuracy by 3.4% and reduce the Log loss by almost 16% in the considered scenario.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源