论文标题

通过采样模拟跨模式和空间相关的Zernike系数来模拟各个方向性的湍流

Simulating Anisoplanatic Turbulence by Sampling Inter-modal and Spatially Correlated Zernike Coefficients

论文作者

Chimitt, Nicholas, Chan, Stanley H.

论文摘要

模拟大气湍流是评估缓解湍流算法和训练学习方法的重要任务。可用于大气湍流的高级数值模拟器,但是它们需要评估波动传播,这在计算上昂贵。在本文中,我们提出了一种通过湍流模拟成像的无传播方法。我们工作背后的关键思想是一种绘制模式间和空间相关的Zernike系数的新方法。通过建立Basu,McCrae和Fiorino(2015)的到达角度相关性与Chanan(1992)的多孔相关性之间的等价性,我们表明可以根据定义相关性的协变量矩阵来绘制Zernike系数。我们提出了快速,可扩展的采样策略来绘制这些样品。新方法使我们能够将波传播问题压缩为抽样问题,因此使新模拟器明显快于现有模拟器。实验结果表明,模拟器与理论和实际湍流数据具有极好的匹配。

Simulating atmospheric turbulence is an essential task for evaluating turbulence mitigation algorithms and training learning-based methods. Advanced numerical simulators for atmospheric turbulence are available, but they require evaluating wave propagation which is computationally expensive. In this paper, we present a propagation-free method for simulating imaging through turbulence. The key idea behind our work is a new method to draw inter-modal and spatially correlated Zernike coefficients. By establishing the equivalence between the angle-of-arrival correlation by Basu, McCrae and Fiorino (2015) and the multi-aperture correlation by Chanan (1992), we show that the Zernike coefficients can be drawn according to a covariance matrix defining the correlations. We propose fast and scalable sampling strategies to draw these samples. The new method allows us to compress the wave propagation problem into a sampling problem, hence making the new simulator significantly faster than existing ones. Experimental results show that the simulator has an excellent match with the theory and real turbulence data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源