论文标题

$ uge_2 $的超导性理论重新审视

Theory of the superconductivity of $UGe_2$ revisited

论文作者

Karchev, Naoum

论文摘要

我们提出了$ uge_2 $的磁性和超导性的统一理论。为此,我们将$ 5F $铀电子的一部分视为巡回演出,而其他铀电子则主要是本地化的。区分局部电子的主要特征是压力对它们的影响。压力强烈筛选巡回电子,而本地化电子几乎不受影响。筛选巡回电子会导致其库仑排斥力减少,因此形成了双重占据和空的状态。这些状态是旋转的旋转和巡回电子的有效自旋,bohr magneton单位的零温度磁化量减少。我们获得了有效的两旋Heisenberg模型,该模型解释了$ uge_2 $的磁化 - 温度图。结果表明,实验观察到的特征温度$ t_x $,是部分订单过渡温度。在Curie温度$(T_X <T_C)$下方,系统从高温阶段进行过渡,仅局部电子贡献了磁化强度,并在低温1中造成了磁化,在该磁化率上,静止和局部电子都会贡献磁化。当压力增加时,特征温度会降低。在量子部分订单点$ t_x = 0 $下,流动电子的zeeman拆分为零。这允许形成库珀对,以及由局部电子的横向波动引起的超导性发作。与量子部分有序状态的小偏差会导致超导性的抑制。这解释了超导过渡温度的圆顶形式。非常低的超导临界温度是伊斯林铁磁剂的结果。

We present a unified theory of magnetism and superconductivity of $UGe_2$. To this end, we consider part of $5f$ uranium electrons as mostly itinerant and other ones as mostly localized. The main feature that distinguishes the localized from the itinerant electrons is the effect of the pressure on them. The pressure strongly screens the itinerant electrons while the localized ones are almost unaffected. The screening of itinerant electrons leads to decreasing of their Coulomb repulsion, therefore to formation of doubly occupied and empty states. These states are spin-singlet and the effective spin of itinerant electrons, the zero-temperature magnetization in units of Bohr magneton, decreases. We obtain an effective two-spin Heisenberg model, which explains the magnetization-temperature diagram of $UGe_2$. It is shown that the experimentally observed characteristic temperature $T_x$, is a partial order transition temperature. Below the Curie temperature $(T_x<T_C)$ the system undergoes a transition from high temperature phase, were only localized electrons contribute the magnetization, to the low temperature one, where both itinerant and localized electrons contribute the magnetization. The characteristic temperature decreases when pressure increases. At the quantum partial order point $T_x=0$, the Zeeman splitting of the itinerant electrons is zero. This permits formation of Cooper pairs and an onset of superconductivity induced by the transversal fluctuations of the localized electrons. Small deviation from the quantum partial ordered state leads to suppression of superconductivity. This explains the dome form of the superconducting transition temperature. The very low superconducting critical temperature is a consequence of the Ising ferromagnetism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源