论文标题

氢键相互作用促进MXENE-WATER界面处的闪存能量传输

Hydrogen Bond Interaction Promotes Flash Energy Transport at MXene-water Interface

论文作者

Li, Jiebo, Chi, Zhen, Qin, Ruzhan, Yan, Li, Lin, Xubo, Hu, Mingjun, Shan, Guangcun, Chen, Hailong, Weng, Yu-Xiang

论文摘要

使用MXENE有一些新兴的光热转化应用程序,但是这些应用下的机制与界面能量从MXENE相关的界面能量迁移仍然未知。在本文中,通过全面的超快研究,我们报告了血浆激发下从MXENE(TI3C2TX)到本地环境的能量迁移途径。我们的数据发现,在水中,能量耗散分为快速的氢键介导的通道和慢晶格运动介导的通道。在水中,从光激发中获得的近80%的能量在水中获得的近80%的能量迅速散发到周围的水分子中,在7 ps中作为氢键介导的快速通道,以及剩余的通道,以及剩余的通道,以及剩余的速度恒定量降低了lattice out nications niend pess nidice satiens〜s nied s nidics nidice〜lattice〜lattice〜lattice〜lattice〜lattice〜lattice y lattice。快速能量迁移将导致MXENE-WATER接口的突出界面能量电导150-300 MW * M {-2} * K {-1}。将溶剂调整为乙醇都可以通过快速通道将能量耗散缩小至35%,并减慢热通道(400 ps)。为了获得分子见解,分子动态结果在MXENE表面上具有不同的H键形成能力。我们的结果表明,界面相互作用对于在Mxene表面上有效氢键以引发激发耗散,从而为使用MXENE提供了热热应用至关重要。

There are emerging applications for photothermal conversion utilizing MXene, but the mechanism under these applications related interfacial energy migration from MXene to the attached surface layer is still unknown. In this paper, with comprehensive ultrafast studies, we reported the energy migration pathway from MXene (Ti3C2Tx) to local environment under plasmonic excitation. Our data found that in water, energy dissipation is divided into fast hydrogen bond mediated channel and slow lattice motion mediated channel.The experimental results suggest that in water, nearly 80% energy in MXene that gained from the photoexcitation quickly dissipates into surrounding water molecules within 7 ps as a hydrogen bond mediated fast channel, and the remaining energy vanishes with time constant ~100 ps as a lattice motion mediated slow channel. The fast energy migration would result in the prominent interfacial energy conductance 150-300 MW *m{-2}* K{-1} for MXene-water interface. Tuning the solvent into ethanol could both narrow the energy dissipation to 35% through the fast channel and slow down the thermal channel (400 ps). To gain the molecular insight, molecular dynamic results presented different solvents had significantly different H bond forming ability on MXene surface. Our results suggested that interfacial interaction is crucial for effective hydrogen bonds on MXene surface to channel the excitation dissipation, providing important insights into the photothermal applications with MXene.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源