论文标题

带有嘈杂标签的深度学习分类

Deep Learning Classification With Noisy Labels

论文作者

Sanchez, Guillaume, Guis, Vincente, Marxer, Ricard, Bouchara, Frédéric

论文摘要

深度学习系统以大图像数据集为代价显示了图像分类的巨大准确性。收集此类数据可能会导致培训集中的错误标记。为检索,分类或建议索引多媒体内容可能涉及基于多个标准的标记或分类。在我们的案例中,我们训练面部识别系统,以识别与一组封闭的身份,同时暴露于大量的扰动者(我们的数据库未知的参与者)。众所周知,面部分类器对标签噪声很敏感。我们回顾了有关如何在训练深度学习分类器时如何管理嘈杂注释的最新著作,而不是我们对面部识别的兴趣。

Deep Learning systems have shown tremendous accuracy in image classification, at the cost of big image datasets. Collecting such amounts of data can lead to labelling errors in the training set. Indexing multimedia content for retrieval, classification or recommendation can involve tagging or classification based on multiple criteria. In our case, we train face recognition systems for actors identification with a closed set of identities while being exposed to a significant number of perturbators (actors unknown to our database). Face classifiers are known to be sensitive to label noise. We review recent works on how to manage noisy annotations when training deep learning classifiers, independently from our interest in face recognition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源