论文标题
布拉格散射断层扫描
Bragg scattering tomography
论文作者
论文摘要
在这里,我们介绍了一种新的前向模型和成像模式,用于Bragg散射断层扫描(BST)。我们建议的模型基于具有线性探测器准准仪的X射线门户扫描仪,目前正在开发用于机场行李筛查。所考虑的几何形状使我们进入了一个新型的二维反问题,我们旨在在平面上的一组对称$ C^2 $曲线上重建从其积分中从其积分中重建散射差异的横截面函数。描述BST中正向问题的整体变换是一种新型的ra tonvers,我们将其介绍并表示为Bragg变换。我们在此处为Bragg变换提供了新的注射性结果,并描述了如何应用定理的条件来协助门户扫描仪的机器设计。此外,我们将结果扩展到$ n $ Dimensions,其中引入了Bragg变换的概括。在这里,我们的目标是从其积分中重建$ \ Mathbb {r}^{n+1} $上的真实有价值的函数,这是$ c^2 $曲线的$ n $维度表面,嵌入了$ \ Mathbb {r}^{n+1} $。还为广义Bragg变换提供了注射率证明。
Here we introduce a new forward model and imaging modality for Bragg Scattering Tomography (BST). The model we propose is based on an X-ray portal scanner with linear detector collimation, currently being developed for use in airport baggage screening. The geometry under consideration leads us to a novel two-dimensional inverse problem, where we aim to reconstruct the Bragg scattering differential cross section function from its integrals over a set of symmetric $C^2$ curves in the plane. The integral transform which describes the forward problem in BST is a new type of Radon transform, which we introduce and denote as the Bragg transform. We provide new injectivity results for the Bragg transform here, and describe how the conditions of our theorems can be applied to assist in the machine design of the portal scanner. Further we provide an extension of our results to $n$-dimensions, where a generalization of the Bragg transform is introduced. Here we aim to reconstruct a real valued function on $\mathbb{R}^{n+1}$ from its integrals over $n$-dimensional surfaces of revolution of $C^2$ curves embedded in $\mathbb{R}^{n+1}$. Injectivity proofs are provided also for the generalized Bragg transform.