论文标题

有限生成的组中较大半径的中等尺度曲率

Medium-scale curvature at larger radii in finitely generated groups

论文作者

Kropholler, Robert, Mallery, Brendan

论文摘要

在本文中,我们研究了中等规模曲率,这是组的RICCI曲率概念。我们表明,死前元素产生非负曲率。我们利用相关元素在Lamplighter和Houghton的组中找到大量的正曲率。我们还研究了增加曲率半径的效果,并给出了任意半径的阳性曲率的例子。最后,我们将这种曲率的概念与Ollivier引入的RICCI曲率进行了比较。

In this paper we study medium scale curvature, a notion of Ricci curvature for groups. We show that dead-end elements yield non-negative curvature. We make use of related elements to find large classes of positive curvature in the lamplighter and Houghton's group. We also study the effect of increasing the radius of curvature and give examples of positive curvature for arbitrary radius. Finally we make some comparisons between this notion of curvature and the Ricci curvature introduced by Ollivier.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源