论文标题

有限密度的晶格QCD的新方法;粗晶格上的临界终点的结果

New approach to lattice QCD at finite density; results for the critical end point on coarse lattices

论文作者

Giordano, Matteo, Kapas, Kornel, Katz, Sandor D., Nogradi, Daniel, Pasztor, Attila

论文摘要

除了众所周知的符号问题外,目前用于研究有限的重子密度晶格QCD的所有方法都遭受了不可控制的系统不确定性。我们制定和测试一种直接以有限的$μ=μ_b/3 $起作用的算法,符号重新加权,并且尚未与任何此类不受控制的系统学。使用此算法,{\ em唯一}问题是符号问题本身。这种方法涉及具有正效率$ | {\ rm re \; det} d(μ)| $其中$ d(μ)$是dirac矩阵,符号$ {\ rm sign} \; ({\ rm re \; det} d(μ))= \ pm 1 $由离散的重新加权处理。因此,只有两个扇区,$+1 $和$ -1 $,只要平均$ \ langle \ pm 1 \ rangle \ neq 0 $(相对于正权重),符号的这种离散重量重量就不会带来重叠问题,并且结果是可靠的。使用未改进的交出离散化,在$ n_t = 4 $ lattices上测试了$ 2+1 $的口味和物理夸克质量。通过测量在空间晶格上裸耦合$ l/a = 8、10、12 $中的渔民(有时也称为Lee-Yang)零,我们得出的结论是,$μ= 0 $的交叉点在$μ> 0 $时变得更强,并且与$μ_b/t \ sim 2.4 $的真实相位过渡保持一致。

All approaches currently used to study finite baryon density lattice QCD suffer from uncontrolled systematic uncertainties in addition to the well-known sign problem. We formulate and test an algorithm, sign reweighting, that works directly at finite $μ= μ_B/3$ and is yet free from any such uncontrolled systematics. With this algorithm the {\em only} problem is the sign problem itself. This approach involves the generation of configurations with the positive fermionic weight $|{\rm Re\; det} D(μ)|$ where $D(μ)$ is the Dirac matrix and the signs ${\rm sign} \; ( {\rm Re\; det} D(μ) ) = \pm 1$ are handled by a discrete reweighting. Hence there are only two sectors, $+1$ and $-1$ and as long as the average $\langle\pm 1\rangle \neq 0$ (with respect to the positive weight) this discrete reweighting by the signs carries no overlap problem and the results are reliable. The approach is tested on $N_t = 4$ lattices with $2+1$ flavors and physical quark masses using the unimproved staggered discretization. By measuring the Fisher (sometimes also called Lee-Yang) zeros in the bare coupling on spatial lattices $L/a = 8, 10, 12$ we conclude that the cross-over present at $μ= 0$ becomes stronger at $μ> 0$ and is consistent with a true phase transition at around $μ_B/T \sim 2.4$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源