论文标题

狄拉克流体中流体动力传输的均质化

Homogenization of hydrodynamic transport in Dirac fluids

论文作者

Bal, Guillaume, Lucas, Andrew, Luskin, Mitchell

论文摘要

普通金属中的大规模电流和热电流通过有效的培养基理论很好地近似:全球运输特性受均化耦合扩散方程的解决方案的控制。在某些金属中,包括几乎电荷中性石墨烯的狄拉克流体,微观传输不受扩散的控制,而是由一组更复杂的线性化流体动力方程组成的,它们形成了一个脱离椭圆方程的系统,并与Stokes方程相连,以获得流体速度。在足够的不均匀培养基中,这些流体动力方程减少了均质扩散方程。我们将流体动力传输方程重新铸造为功能上的最大值,并提出一个功能框架,以建模和计算与电流和热电流相关的均质扩散张量与电荷和温度梯度。我们对该系统概括了均质理论的两个众所周知的结果:牙垢在周期性和高度振荡培养基中局部收敛到同质化理论的证明,以及上述在具有高度振荡,固定和厄贡系数的随机培养基中的亚功能。

Large-scale electrical and thermal currents in ordinary metals are well approximated by effective medium theory: global transport properties are governed by the solution to homogenized coupled diffusion equations. In some metals, including the Dirac fluid of nearly charge neutral graphene, microscopic transport is not governed by diffusion, but by a more complicated set of linearized hydrodynamic equations, which form a system of degenerate elliptic equations coupled with the Stokes equation for fluid velocity. In sufficiently inhomogeneous media, these hydrodynamic equations reduce to homogenized diffusion equations. We re-cast the hydrodynamic transport equations as the infimum of a functional over conserved currents, and present a functional framework to model and compute the homogenized diffusion tensor relating electrical and thermal currents to charge and temperature gradients. We generalize to this system two well-known results in homogenization theory: Tartar's proof of local convergence to the homogenized theory in periodic and highly oscillatory media, and sub-additivity of the above functional in random media with highly oscillatory, stationary and ergodic coefficients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源