论文标题
有效评估正常和异常的时间域平衡绿色功能在不均匀系统中的功能的有效数值方法
Efficient numerical method for evaluating normal and anomalous time-domain equilibrium Green's functions in inhomogeneous systems
论文作者
论文摘要
在这项工作中,我们通过正交多项式链开发了时代:平衡传播器,这是一种计算有效的方法,用于计算时间依赖时间的平衡绿色功能,包括超导体的异常绿色功能,以捕获大型不均匀系统中的时间进化。时期方法从量子化学中概括了Chebyshev波包的传播方法,并有效地纳入了平衡量子凝结物质系统所需的费米 - 迪拉克统计。时期的计算成本仅在系统自由度上线性缩放,从而为非常大的系统产生了极其有效的算法。我们通过计算两个和三个维度的超导金属界面附近的激发的时间进化来证明时期方法的功能,从而捕获透射以及正常和Andreev的反射。
In this work we develop EPOCH: Equilibrium Propagator by Orthogonal polynomial CHain, a computationally efficient method to calculate the time-dependent equilibrium Green's functions, including the anomalous Green's functions of superconductors, to capture the time-evolution in large inhomogeneous systems. The EPOCH method generalizes the Chebyshev wave-packet propagation method from quantum chemistry and efficiently incorporates the Fermi-Dirac statistics that is needed for equilibrium quantum condensed matter systems. The computational cost of EPOCH scales only linearly in the system degrees of freedom, generating an extremely efficient algorithm also for very large systems. We demonstrate the power of the EPOCH method by calculating the time-evolution of an excitation near a superconductor-normal metal interface in two and three dimensions, capturing transmission as well as normal and Andreev reflections.