论文标题
纠正$ f(r)$重力通货膨胀的不一致
Rectifying an Inconsistency in $F(R)$ Gravity Inflation
论文作者
论文摘要
在这封信中,我们将对电源频谱的通货膨胀慢速指数进行正式推导,而无需条件$ \dotε_1= 0 $,在文献中经常使用,其中$ε_1= - \ frac {\ frac {\ dot {h}}} {h^2} {h^2} {h^2} $是第一个slod slost slost insex。我们将使用Karamata的定理进行定期变化的函数,如我们所示,我们将在$ f(r)$ deverity的标量和张量频谱指数中得出相同的表达式,也出现在当前文献中,而没有误导性和相当强的条件$ \dotε_1= 0 $。唯一需要的条件是缓慢的假设,以及在通货膨胀期间慢速指数及其衍生物的较小性。
In this letter we shall provide a formal derivation of the inflationary slow-roll indices for $F(R)$ gravity from the power spectrum without the condition $\dotε_1=0$, frequently used in the literature, where $ε_1=-\frac{\dot{H}}{H^2}$ is the first slow-roll index. We shall employ Karamata's theorem for regularly varying functions, and as we show, we shall derive the same expressions for the scalar and tensor spectral index of $F(R)$ gravity, also appearing in the current literature, without the misleading and rather strong condition $\dotε_1=0$. The only conditions that are needed are the slow-roll assumption, and the smallness of the slow-roll indices and of their derivatives during inflation.