论文标题
非促进液体动力学
Non-Boost Invariant Fluid Dynamics
论文作者
论文摘要
我们考虑在任意弯曲背景上没有任何增强对称性的无负荷流体,并将所有允许的传输系数分类为衍生物的一阶。我们假设旋转对称性,并使用熵电流形式主义。在没有增强对称性的情况下,弯曲的背景几何形状称为绝对或亚里士多德时空。我们提出了Landau框架中能量弹药张量的封闭形式的表达,该表达式分为三个部分:耗散性(10),静液压非滴度(2)和一个非静态非降低性零件(4),其中在括号中,我们指出了允许的运输系数的数量。非静态的非静态转运系数可以被认为是如果我们限制线性化扰动并强加了onsager关系的系数的概括,这些系数将消失。对于两个静液压和四个非静态非静态运输系数,我们提出了拉格朗日描述。最后,当我们强加尺度不变性时,限制了Lifshitz流体时,我们发现7种耗散性,1个静水压和2个非静态非静态转运系数。
We consider uncharged fluids without any boost symmetry on an arbitrary curved background and classify all allowed transport coefficients up to first order in derivatives. We assume rotational symmetry and we use the entropy current formalism. The curved background geometry in the absence of boost symmetry is called absolute or Aristotelian spacetime. We present a closed-form expression for the energy-momentum tensor in Landau frame which splits into three parts: a dissipative (10), a hydrostatic non-dissipative (2) and a non-hydrostatic non-dissipative part (4), where in parenthesis we have indicated the number of allowed transport coefficients. The non-hydrostatic non-dissipative transport coefficients can be thought of as the generalization of coefficients that would vanish if we were to restrict to linearized perturbations and impose the Onsager relations. For the two hydrostatic and the four non-hydrostatic non-dissipative transport coefficients we present a Lagrangian description. Finally when we impose scale invariance, thus restricting to Lifshitz fluids, we find 7 dissipative, 1 hydrostatic and 2 non-hydrostatic non-dissipative transport coefficients.