论文标题

在$ c^1 $域和Lipschitz域中的谐波功能的边界的独特延续

Unique continuation at the boundary for harmonic functions in $C^1$ domains and Lipschitz domains with small constant

论文作者

Tolsa, Xavier

论文摘要

令$ω\ subset \ mathbb r^n $为$ c^1 $域,或更一般的lipschitz域,带有小的本地Lipschitz常数。在本文中,表明,如果$ u $是$ω$的函数谐音,并且连续$ \叠加ω$在相对开放的子集$σ\ subset \partialΩ$中消失,此外,正常的衍生衍生物$ \partial_νu$ $ $ $ $ u $ $ $ $ $ $ 0。

Let $Ω\subset\mathbb R^n$ be a $C^1$ domain, or more generally, a Lipschitz domain with small local Lipschitz constant. In this paper it is shown that if $u$ is a function harmonic in $Ω$ and continuous in $\overline Ω$ which vanishes in a relatively open subset $Σ\subset\partialΩ$ and moreover the normal derivative $\partial_νu$ vanishes in a subset of $Σ$ with positive surface measure, then $u$ is identically $0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源