论文标题

通过约束二进制粒子群优化的分离主成分分析

Disjoint principal component analysis by constrained binary particle swarm optimization

论文作者

Ramírez-Figueroa, John, Martín-Barreiro, Carlos, Nieto-Librero, Ana B., Leiva-Sánchez, Victor, Galindo-Villardón, Purificación

论文摘要

在本文中,我们提出了一种替代方法,用于分离主成分分析。该方法由具有约束的主组件分析组成,这使我们能够确定原始变量不相交子集的线性组合的不相交组件。提出的方法通过粒子群体分离主成分分析命名为约束二进制优化,因为它基于粒子群优化。该方法使用随机优化在高计算复杂性的情况下找到解决方案。与该方法关联的算法开始生成随机的粒子总体,该粒子群体迭代地演变为直到达到脱节组件的函数的全局最佳最佳。提供数值结果以确认所提出方法获得的解决方案的质量。使用真实数据的说明性示例是为了显示该方法的潜在应用。

In this paper, we propose an alternative method to the disjoint principal component analysis. The method consists of a principal component analysis with constraints, which allows us to determine disjoint components that are linear combinations of disjoint subsets of the original variables. The proposed method is named constrained binary optimization by particle swarm disjoint principal component analysis, since it is based on the particle swarm optimization. The method uses stochastic optimization to find solutions in cases of high computational complexity. The algorithm associated with the method starts generating randomly a particle population which iteratively evolves until attaining a global optimum which is function of the disjoint components. Numerical results are provided to confirm the quality of the solutions attained by the proposed method. Illustrative examples with real data are conducted to show the potential applications of the method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源