论文标题

使用异常检测发现不完全可观察的对抗动作

Discovering Imperfectly Observable Adversarial Actions using Anomaly Detection

论文作者

Petrova, Olga, Durkota, Karel, Alperovich, Galina, Horak, Karel, Najman, Michal, Bosansky, Branislav, Lisy, Viliam

论文摘要

异常检测是发现异常和可疑行为的一种方法。在许多实际情况下,检查的事件可以直接链接到对手的行动,例如对计算机网络的攻击或金融操作中的欺诈行为。尽管防守者想发现这种恶意行为,但攻击者试图在避免检测的同时实现其目标(例如,渗透数据)。为此,在游戏理论框架中使用了异常检测器,该框架捕捉了两人竞赛的这些目标。我们通过(1)允许两个玩家具有连续的动作空间,并假设(2)辩护人无法完美观察攻击者的动作,从而将现有模型扩展到了更现实的设置。我们提出了两种用于求解此类游戏的算法 - 基于离散功能空间和线性编程的离散算法的直接扩展以及基于约束学习的第二种算法。实验表明,这两种算法都适用于特征空间维度较低的情况,但基于学习的方法会产生较少的可利用策略,并且可扩展到更高的维度。此外,我们使用现实世界数据将我们的方法与通过DNS渠道的数据外观方案中的现有分类器进行比较。结果表明,知情攻击者的模型明显减少了。

Anomaly detection is a method for discovering unusual and suspicious behavior. In many real-world scenarios, the examined events can be directly linked to the actions of an adversary, such as attacks on computer networks or frauds in financial operations. While the defender wants to discover such malicious behavior, the attacker seeks to accomplish their goal (e.g., exfiltrating data) while avoiding the detection. To this end, anomaly detectors have been used in a game-theoretic framework that captures these goals of a two-player competition. We extend the existing models to more realistic settings by (1) allowing both players to have continuous action spaces and by assuming that (2) the defender cannot perfectly observe the action of the attacker. We propose two algorithms for solving such games -- a direct extension of existing algorithms based on discretizing the feature space and linear programming and the second algorithm based on constrained learning. Experiments show that both algorithms are applicable for cases with low feature space dimensions but the learning-based method produces less exploitable strategies and it is scalable to higher dimensions. Moreover, we use real-world data to compare our approaches with existing classifiers in a data-exfiltration scenario via the DNS channel. The results show that our models are significantly less exploitable by an informed attacker.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源