论文标题
与Smoothtaylor了解集成梯度,以进行深层神经网络归因
Understanding Integrated Gradients with SmoothTaylor for Deep Neural Network Attribution
论文作者
论文摘要
集成梯度作为深神经网络模型的归因方法提供了简单的可实施性。但是,它遭受了影响可解释性的解释的嘈杂性。提出了SmoothGrad技术来解决噪声问题并平滑任何基于梯度的归因方法的归因图。在本文中,从泰勒定理的角度来看,我们将Smoothtaylor作为一种新颖的理论概念架起了综合梯度和Smoothgrad。我们使用ILSVRC2012 ImageNet对象识别数据集将方法应用于图像分类问题,以及几个验证的图像模型来生成归因地图。这些归因地图是使用敏感性和噪声水平的定量措施进行经验评估的。我们进一步提出了自适应的努力,以优化噪声量表超参数值。从我们的实验中,我们发现SmoothTaylor和自适应尖锐的方法能够产生更好的质量显着图,而噪声较小,并且与集成梯度相比,对输入空间中相关点的敏感性更高。
Integrated Gradients as an attribution method for deep neural network models offers simple implementability. However, it suffers from noisiness of explanations which affects the ease of interpretability. The SmoothGrad technique is proposed to solve the noisiness issue and smoothen the attribution maps of any gradient-based attribution method. In this paper, we present SmoothTaylor as a novel theoretical concept bridging Integrated Gradients and SmoothGrad, from the Taylor's theorem perspective. We apply the methods to the image classification problem, using the ILSVRC2012 ImageNet object recognition dataset, and a couple of pretrained image models to generate attribution maps. These attribution maps are empirically evaluated using quantitative measures for sensitivity and noise level. We further propose adaptive noising to optimize for the noise scale hyperparameter value. From our experiments, we find that the SmoothTaylor approach together with adaptive noising is able to generate better quality saliency maps with lesser noise and higher sensitivity to the relevant points in the input space as compared to Integrated Gradients.