论文标题

SOQAL:主动学习中的选择性甲骨文提问

SoQal: Selective Oracle Questioning in Active Learning

论文作者

Kiyasseh, Dani, Zhu, Tingting, Clifton, David A.

论文摘要

医疗领域内的大量未标记数据仍然不足。主动学习提供了一种通过迭代要求Oracle(例如医学专家)标记实例来利用这些数据集的方法。这个过程可能是昂贵的,耗时的过程过于依赖于甲骨文。为了减轻这一负担,我们提出了Soqal,这是一种质疑策略,该策略会动态地确定何时应从Oracle请求标签。我们对五个公开可用的数据集进行了实验,并说明了Soqal相对于基线方法的优势,包括其将Oracle标签请求最多减少35%的能力。 Soqal在标签噪声的存在下还具有竞争力:在面临困难的分类任务时模拟临床医生不确定的诊断的情况。

Large sets of unlabelled data within the healthcare domain remain underutilized. Active learning offers a way to exploit these datasets by iteratively requesting an oracle (e.g. medical professional) to label instances. This process, which can be costly and time-consuming is overly-dependent upon an oracle. To alleviate this burden, we propose SoQal, a questioning strategy that dynamically determines when a label should be requested from an oracle. We perform experiments on five publically-available datasets and illustrate SoQal's superiority relative to baseline approaches, including its ability to reduce oracle label requests by up to 35%. SoQal also performs competitively in the presence of label noise: a scenario that simulates clinicians' uncertain diagnoses when faced with difficult classification tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源