论文标题
关于基于哈希的签名在量子安全互联网中的作用:当前的解决方案和未来的方向
On the Role of Hash-based Signatures in Quantum-Safe Internet of Things: Current Solutions and Future Directions
论文作者
论文摘要
物联网(IoT)通过启用具有计算和通信能力的小型事物来收集,处理,分析和解释信息,成为我们周围普遍存在的存在。因此,值得信赖的数据作为依赖这些事物产生的数据,进行关键决策过程,数据调试,风险评估,法医分析和性能调整的应用程序的燃料。目前,物联网中的安全可靠数据通信基于诸如椭圆曲线密码系统(ECC)等公开密钥密码系统。然而,依赖于事实上的加密原语的安全性有可能被即将到来的量子计算机打破。因此,从经典原始原则到量子安全原始的过渡是必不可少的,以确保数据的总体安全性。在本文中,我们调查了量子时代的物联网设备安全性的,称为基于哈希的签名(HBS)方案的量子后签名之一的应用。我们简要概述了HBS方案的演变,重点是它们的构建参数以及相关的优势和缺点。然后,我们概述了HBS方案的引人注目的特征及其对量子时代物联网安全的意义。我们研究了IoT网络中HB的最佳选择,以其其性能受限的要求,资源受限的性质和设计优化目标。除了进行持续的标准化工作外,我们还强调了当前和未来的研究和部署挑战以及可能的解决方案。最后,我们概述了在准备量子世界时,物联网生态系统必须采用的基本措施和建议。
The Internet of Things (IoT) is gaining ground as a pervasive presence around us by enabling miniaturized things with computation and communication capabilities to collect, process, analyze, and interpret information. Consequently, trustworthy data act as fuel for applications that rely on the data generated by these things, for critical decision-making processes, data debugging, risk assessment, forensic analysis, and performance tuning. Currently, secure and reliable data communication in IoT is based on public-key cryptosystems such as Elliptic Curve Cryptosystem (ECC). Nevertheless, reliance on the security of de-facto cryptographic primitives is at risk of being broken by the impending quantum computers. Therefore, the transition from classical primitives to quantum-safe primitives is indispensable to ensure the overall security of data en route. In this paper, we investigate applications of one of the post-quantum signatures called Hash-Based Signature (HBS) schemes for the security of IoT devices in the quantum era. We give a succinct overview of the evolution of HBS schemes with emphasis on their construction parameters and associated strengths and weaknesses. Then, we outline the striking features of HBS schemes and their significance for the IoT security in the quantum era. We investigate the optimal selection of HBS in the IoT networks with respect to their performance-constrained requirements, resource-constrained nature, and design optimization objectives. In addition to ongoing standardization efforts, we also highlight current and future research and deployment challenges along with possible solutions. Finally, we outline the essential measures and recommendations that must be adopted by the IoT ecosystem while preparing for the quantum world.