论文标题
使用逆增强学习的顺序异常检测
Sequential Anomaly Detection using Inverse Reinforcement Learning
论文作者
论文摘要
异常检测中最有趣的应用程序方案之一是何时针对顺序数据。例如,在安全至关重要的环境中,拥有一个自动检测系统以筛选通过监视传感器收集的流数据并报告异常观察结果至关重要。通常,当这些潜在的异常是故意或面向目标的时,赌注要高得多。我们提出了一个使用逆增强学习(IRL)进行顺序异常检测的端到端框架,其目标是确定触发他/她的行为的决策代理的基本功能。所提出的方法将目标试剂(以及可能其他元信息)的动作顺序作为输入。然后,通过IRL推断出的奖励函数来理解代理的正常行为。我们使用神经网络代表奖励功能。使用学习的奖励功能,我们评估了来自目标剂的新观察是否遵循正常模式。为了构建可靠的异常检测方法并考虑到预测的异常评分的信心,我们采用了IRL的贝叶斯方法。关于公开现实世界数据的实证研究表明,我们提出的方法有效地识别异常。
One of the most interesting application scenarios in anomaly detection is when sequential data are targeted. For example, in a safety-critical environment, it is crucial to have an automatic detection system to screen the streaming data gathered by monitoring sensors and to report abnormal observations if detected in real-time. Oftentimes, stakes are much higher when these potential anomalies are intentional or goal-oriented. We propose an end-to-end framework for sequential anomaly detection using inverse reinforcement learning (IRL), whose objective is to determine the decision-making agent's underlying function which triggers his/her behavior. The proposed method takes the sequence of actions of a target agent (and possibly other meta information) as input. The agent's normal behavior is then understood by the reward function which is inferred via IRL. We use a neural network to represent a reward function. Using a learned reward function, we evaluate whether a new observation from the target agent follows a normal pattern. In order to construct a reliable anomaly detection method and take into consideration the confidence of the predicted anomaly score, we adopt a Bayesian approach for IRL. The empirical study on publicly available real-world data shows that our proposed method is effective in identifying anomalies.