论文标题

多光谱视频融合用于非接触式监测呼吸率和呼吸暂停

Multispectral Video Fusion for Non-contact Monitoring of Respiratory Rate and Apnea

论文作者

Scebba, Gaetano, Da Poian, Giulia, Karlen, Walter

论文摘要

在许多临床应用中,需要连续监测呼吸活动,以检测呼吸事件。可以通过近红外频谱摄像头可以实现呼吸的非接触式监测。但是,当前的技术不足以在临床应用中使用。例如,他们无法在呼吸暂停期间估计准确的呼吸率(RR)。我们提出了一种基于多光谱数据融合的新型算法,该算法旨在估算呼吸暂停期间的RR。该算法独立解决了RR估计和呼吸暂停检测任务。呼吸信息是从多个来源提取的,并将其馈入RR估计器和呼吸暂停检测器,其结果融合到最终的呼吸活动估计中。我们使用30名健康成年人的数据回顾性评估了该系统,他们在仰卧躺在黑暗的房间里进行了多样化的呼吸任务,并重现了中央和阻塞性呼吸暂停事件。来自多光谱摄像机的多个呼吸信息的组合提高了RR估计的根平方误差(RMSE)精度,从4.64个单光谱数据降低到1.60呼吸/分钟。 F1分类(0.75至0.86)和中央呼吸暂停(0.75至0.93)的中位数得分也得到了改善。此外,对呼吸暂停检测的独立考虑导致了一个更健壮的系统(RMSE为4.44 vs. 7.96呼吸/分钟)。我们的发现可能代表着在医疗应用中使用摄像机进行生命体征监测的一步。

Continuous monitoring of respiratory activity is desirable in many clinical applications to detect respiratory events. Non-contact monitoring of respiration can be achieved with near- and far-infrared spectrum cameras. However, current technologies are not sufficiently robust to be used in clinical applications. For example, they fail to estimate an accurate respiratory rate (RR) during apnea. We present a novel algorithm based on multispectral data fusion that aims at estimating RR also during apnea. The algorithm independently addresses the RR estimation and apnea detection tasks. Respiratory information is extracted from multiple sources and fed into an RR estimator and an apnea detector whose results are fused into a final respiratory activity estimation. We evaluated the system retrospectively using data from 30 healthy adults who performed diverse controlled breathing tasks while lying supine in a dark room and reproduced central and obstructive apneic events. Combining multiple respiratory information from multispectral cameras improved the root mean square error (RMSE) accuracy of the RR estimation from up to 4.64 monospectral data down to 1.60 breaths/min. The median F1 scores for classifying obstructive (0.75 to 0.86) and central apnea (0.75 to 0.93) also improved. Furthermore, the independent consideration of apnea detection led to a more robust system (RMSE of 4.44 vs. 7.96 breaths/min). Our findings may represent a step towards the use of cameras for vital sign monitoring in medical applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源