论文标题

深度小脑核通过半监督的深层上下文感知从7T扩散MRI进行了分割

Deep Cerebellar Nuclei Segmentation via Semi-Supervised Deep Context-Aware Learning from 7T Diffusion MRI

论文作者

Kim, Jinyoung, Patriat, Remi, Kaplan, Jordan, Solomon, Oren, Harel, Noam

论文摘要

深小脑核是小脑的关键结构,与处理电动机和感觉信息有关。因此,对于了解小脑系统及其在深脑刺激治疗中的实用性,准确段性地分割深小脑核是一个至关重要的步骤。但是,在标准的临床磁共振成像(MRI)方案下清楚地将如此小的核清楚地可视化,因此精确的分割是不可行的。 7种特斯拉(T)MRI技术的最新进展和深度神经网络的巨大潜力促进了自动特定于患者的分割。在本文中,我们提出了一个新颖的深度学习框架(称为DCN-NET),以便对7T扩散MRI上深,精确且稳健的患者特异性分割和深度小脑齿状核和插入核。 DCN-NET有效地在没有连续合并操作的情况下有效地编码了贴片图像上的上下文信息,并通过提出的扩张致密块添加复杂性。在端到端训练期间,齿状和插入核的标签概率是通过混合损失独立学习的,可以处理高度不平衡的数据。最后,我们利用自我训练策略来应对有限的标记数据问题。为此,通过使用在手动标签上训练的DCN-NET,在未标记的数据上创建了辅助牙齿和插入核标签。我们使用60名受试者的7T B0 MRI验证了提出的框架。实验结果表明,DCN-NET比基于ATLAS的深度小脑核分割工具和其他最先进的深神经网络提供了更好的分割。我们进一步证明了DCN-NET中提出的组件在齿状和插入核分割中的有效性。

Deep cerebellar nuclei are a key structure of the cerebellum that are involved in processing motor and sensory information. It is thus a crucial step to accurately segment deep cerebellar nuclei for the understanding of the cerebellum system and its utility in deep brain stimulation treatment. However, it is challenging to clearly visualize such small nuclei under standard clinical magnetic resonance imaging (MRI) protocols and therefore precise segmentation is not feasible. Recent advances in 7 Tesla (T) MRI technology and great potential of deep neural networks facilitate automatic patient-specific segmentation. In this paper, we propose a novel deep learning framework (referred to as DCN-Net) for fast, accurate, and robust patient-specific segmentation of deep cerebellar dentate and interposed nuclei on 7T diffusion MRI. DCN-Net effectively encodes contextual information on the patch images without consecutive pooling operations and adding complexity via proposed dilated dense blocks. During the end-to-end training, label probabilities of dentate and interposed nuclei are independently learned with a hybrid loss, handling highly imbalanced data. Finally, we utilize self-training strategies to cope with the problem of limited labeled data. To this end, auxiliary dentate and interposed nuclei labels are created on unlabeled data by using DCN-Net trained on manual labels. We validate the proposed framework using 7T B0 MRIs from 60 subjects. Experimental results demonstrate that DCN-Net provides better segmentation than atlas-based deep cerebellar nuclei segmentation tools and other state-of-the-art deep neural networks in terms of accuracy and consistency. We further prove the effectiveness of the proposed components within DCN-Net in dentate and interposed nuclei segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源