论文标题

多层网络的新社区定义和一种新颖的方法,用于其有效计算

A New Community Definition For MultiLayer Networks And A Novel Approach For Its Efficient Computation

论文作者

Santra, Abhishek, Komar, Kanthi Sannappa, Bhowmick, Sanjukta, Chakravarthy, Sharma

论文摘要

随着使用多层网络(或MLN)进行建模和分析正在越来越受欢迎,提出一个社区定义涵盖MLN代表的多个功能并开发算法以有效地计算MLN的算法变得越来越重要。当前,MLN的社区基于使用不同的技术(类型Indepention,基于投影类型等)将网络汇总到单个图中,并在这些图上应用单个图形社区检测算法,例如Louvain和Infomap。此过程导致不同类型的信息丢失(语义和结构)。据我们所知,在本文中,我们首次提出了一个非均质MLN(或HEMLNS)社区的定义,该定义可以保留语义和结构。此外,我们的基本定义可以扩展以根据需要适当匹配分析目标。 在本文中,我们提出了一种保留了与Hemln的社区定义的结构和语义,该结构与单个图的传统定义兼容,并且是单个图的传统定义的扩展。我们还使用新提出的去耦方法提出了一个有效计算的框架。首先,我们为hemln连接的k层定义了k个社区。然后,我们提出了一种算法系列,以使用双方图配对的概念进行计算。此外,为了进行更广泛的分析,我们介绍了几种配对算法和重量指标,用于使用参与的社区特征组成二元HEMLN社区。本质上,这导致了社区计算的可扩展家族。我们提供了广泛的实验结果,以展示使用流行的IMDB和DBLP数据集的拟议计算的效率和分析灵活性。

As the use of MultiLayer Networks (or MLNs) for modeling and analysis is gaining popularity, it is becoming increasingly important to propose a community definition that encompasses the multiple features represented by MLNs and develop algorithms for efficiently computing communities on MLNs. Currently, communities for MLNs, are based on aggregating the networks into single graphs using different techniques (type independent, projection-based, etc.) and applying single graph community detection algorithms, such as Louvain and Infomap on these graphs. This process results in different types of information loss (semantics and structure). To the best of our knowledge, in this paper we propose, for the first time, a definition of community for heterogeneous MLNs (or HeMLNs) which preserves semantics as well as the structure. Additionally, our basic definition can be extended to appropriately match the analysis objectives as needed. In this paper, we present a structure and semantics preserving community definition for HeMLNs that is compatible with and is an extension of the traditional definition for single graphs. We also present a framework for its efficient computation using a newly proposed decoupling approach. First, we define a k-community for connected k layers of a HeMLN. Then we propose a family of algorithms for its computation using the concept of bipartite graph pairings. Further, for a broader analysis, we introduce several pairing algorithms and weight metrics for composing binary HeMLN communities using participating community characteristics. Essentially, this results in an extensible family of community computations. We provide extensive experimental results for showcasing the efficiency and analysis flexibility of the proposed computation using popular IMDb and DBLP data sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源