论文标题
在年轻恒星簇和孤立的二进制中形成的紧凑型二进制的宇宙合并速率密度演变
The cosmic merger rate density evolution of compact binaries formed in young star clusters and in isolated binaries
论文作者
论文摘要
下一代地面重力波检测器将观察到二进制黑洞(BBH)合并到红移$ z \ gtrsim {} 10 $,探测跨宇宙时间的紧凑型二进制(CB)合并的演变。在这里,我们提出了一个新的数据驱动模型,以估计CBS的宇宙合并速率密度(MRD)演变,该模型通过将CB合并的目录与宇宙恒星形成速率密度的观察性约束以及宇宙的金属性演变上的观察性约束。我们采用源自最近$ n- $身体和人口合成模拟的CB合并目录,描述在年轻明星簇(以下称为Dynamilical CBS)和现场(以下是孤立的CBS)中形成的CBS的MRD。动态BBHS的本地MRD为$ \ MATHCAL {R} _ {\ rm bbh} = 64^{+34} _ { - 20} $ gpc $^{ - 3} $ yr $^{ - yr $^{ - 1} $,与第一个和第二个可靠的间隔一致(一致)和第二(o2)一致。与孤立的BBHS($ \ Mathcal {r} _ {\ rm bbh} = 50^{+71} _ { - 37} $ gpc $^{ - 3} $ yr $^{ - 1} $)的合作和合作。动态和孤立的黑洞的本地MRD - 中子恒星二进制文件为$ \ MATHCAL {r} _ {\ rm bhns} = 41^{+33} _ { - 23} $和$ 49^{+48} _这两个值与从O1和O2推断的上限一致。最后,动态二进制中子星的本地MRD(BNSS,$ \ Mathcal {r} _ {\ rm bns} = 151^{+59} _ { - 38} $ gpc $^{ - 3} $^{ - 3} $ yr $^{ - 1} $是两个局部的因素。 ($ \ Mathcal {r} _ {\ rm bns} = 283^{+97} _ { - 75} $ gpc $^{ - 3} $ yr $^{ - 1} $)。所有CB类的MRD随红移而生长,在[1.5,2.5] $中达到$ z \的最大值,然后减少。这种趋势源于宇宙恒星形成速率,金属性演变和二元紧凑型物体延迟时间之间的相互作用。
Next generation ground-based gravitational-wave detectors will observe binary black hole (BBH) mergers up to redshift $z\gtrsim{}10$, probing the evolution of compact binary (CB) mergers across cosmic time. Here, we present a new data-driven model to estimate the cosmic merger rate density (MRD) evolution of CBs, by coupling catalogs of CB mergers with observational constraints on the cosmic star formation rate density and on the metallicity evolution of the Universe. We adopt catalogs of CB mergers derived from recent $N-$body and population-synthesis simulations, to describe the MRD of CBs formed in young star clusters (hereafter, dynamical CBs) and in the field (hereafter, isolated CBs). The local MRD of dynamical BBHs is $\mathcal{R}_{\rm BBH}=64^{+34}_{-20}$ Gpc$^{-3}$ yr$^{-1}$, consistent with the 90% credible interval from the first and second observing run (O1 and O2) of the LIGO-Virgo collaboration, and with the local MRD of isolated BBHs ($\mathcal{R}_{\rm BBH}=50^{+71}_{-37}$ Gpc$^{-3}$ yr$^{-1}$). The local MRD of dynamical and isolated black hole - neutron star binaries is $\mathcal{R}_{\rm BHNS}=41^{+33}_{-23}$ and $49^{+48}_{-34}$~Gpc$^{-3}$ yr$^{-1}$, respectively. Both values are consistent with the upper limit inferred from O1 and O2. Finally, the local MRD of dynamical binary neutron stars (BNSs, $\mathcal{R}_{\rm BNS}=151^{+59}_{-38}$ Gpc$^{-3}$ yr$^{-1}$) is a factor of two lower than the local MRD of isolated BNSs ($\mathcal{R}_{\rm BNS}=283^{+97}_{-75}$ Gpc$^{-3}$ yr$^{-1}$). The MRD for all CB classes grows with redshift, reaching its maximum at $z \in [1.5,2.5]$, and then decreases. This trend springs from the interplay between cosmic star formation rate, metallicity evolution and delay time of binary compact objects.