论文标题
左右理论中的无菌中微子暗物质
Sterile Neutrino Dark Matter in Left-Right Theories
论文作者
论文摘要
$ su(2)_l \ times su(2)_r $量规对称需要三个右撇子中微子($ n _i $),其中之一,$ n_1 $,可以足够稳定,以使其成为暗物质。在早期的宇宙中,$ w _r $与标准型号的热浴交换可在高温下保持右手中微子的热平衡。 $ n_1 $如果它们在相对论的同时冻结,并且会因随后的长寿且右手中微子($ n_2 $)的腐烂而稀释,可以弥补所有暗物质。我们系统地研究了此参数空间,限制了$ su(2)_r $的对称性破坏量表和$ n_1 $的质量和$ n_1 $的质量在$(v_r,m_1)$ plane中的三角形,$ v_r =(10^6-6-3 \ times 10^{12} {12}}} {12})$ gev和$ _1 $ _1 =($ m_1 =($ m_1 =(2) mev)} $。该三角形的大部分可以通过温暖的暗物质信号来探测,尤其是如果$ n_2 $衰减产生观察到的重子不对称的瘦肉发生。 The minimal value of $v_R$ is increased to $10^8 \, {\rm GeV}$ for doublet breaking of $SU(2)_R$, and further to $10^9 \, {\rm GeV}$ if leptogenesis occurs via $N_2$ decay, while the upper bound on $M_1$ is reduced to 100 keV.此外,由于$ n_2 \ rightArrow n_1 \ ell^+ \ ell^ - $,可以通过未来的宇宙微波背景观测来探索的$ n_2 \ rightarrow n_1 \ ell^+ \ ell^ - $的热衰减所产生的热量。有趣的是,$ v_r $的范围允许精确量规耦合统一,也允许Higgs均衡对标准模型Higgs Quartic的消失的理解为$ v_r $。最后,我们通过$ w_r $互动研究了$ n_1 $暗物质的冻结生产,这允许$(v_r,m_1)$更宽。
$SU(2)_L \times SU(2)_R$ gauge symmetry requires three right-handed neutrinos ($ N _i $), one of which, $N_1$, can be sufficiently stable to be dark matter. In the early universe, $ W _R $ exchange with the Standard Model thermal bath keeps the right-handed neutrinos in thermal equilibrium at high temperatures. $N_1$ can make up all of dark matter if they freeze-out while relativistic and are mildly diluted by subsequent decays of a long-lived and heavier right-handed neutrino, $N_2$. We systematically study this parameter space, constraining the symmetry breaking scale of $SU(2)_R$ and the mass of $N_1$ to a triangle in the $(v_R,M_1)$ plane, with $v_R = (10^6 - 3 \times 10^{12})$ GeV and $M_1 = (2\, {\rm keV} - 1 \, {\rm MeV)}$. Much of this triangle can be probed by signals of warm dark matter, especially if leptogenesis from $N_2$ decay yields the observed baryon asymmetry. The minimal value of $v_R$ is increased to $10^8 \, {\rm GeV}$ for doublet breaking of $SU(2)_R$, and further to $10^9 \, {\rm GeV}$ if leptogenesis occurs via $N_2$ decay, while the upper bound on $M_1$ is reduced to 100 keV. In addition, there is a component of hot $N_1$ dark matter resulting from the late decay of $N_2 \rightarrow N_1 \ell^+ \ell^-$ that can be probed by future cosmic microwave background observations. Interestingly, the range of $v_R$ allows both precision gauge coupling unification and the Higgs Parity understanding of the vanishing of the Standard Model Higgs quartic at scale $v_R$. Finally, we study freeze-in production of $N_1$ dark matter via the $W_R$ interaction, which allows a much wider range of $(v_R,M_1)$.