论文标题
自动数据驱动的超参数的选择,用于基于总变化的纹理分段
Automated data-driven selection of the hyperparameters for Total-Variation based texture segmentation
论文作者
论文摘要
惩罚最小二乘广泛用于信号和图像处理。然而,它受到了主要限制,因为它需要对正则化参数进行微调。在对噪声概率分布的假设下,基于Stein的方法提供了二次风险的公正估计器。重新审视广义的Stein无偏风险估计器以处理相关的高斯噪声,而无需倒转协方差矩阵。然后,为了避免扩展的网格搜索,有必要设计算法方案,以最大程度地限制相对于正则化参数的二次风险。这项工作扩展了斯坦因(Stein)对Deledalle等人风险的无偏梯度估计器。对于相关的高斯噪声,可以得出正则化参数的一般自动调整。首先,在一般相关的高斯噪声的情况下,证明了梯度估计量的理论渐近无偏。然后,提出的参数选择策略专门针对分形纹理分割,其中问题表述自然需要尺度间和空间相关的噪声。提供了数值评估,并讨论了实际问题。
Penalized Least Squares are widely used in signal and image processing. Yet, it suffers from a major limitation since it requires fine-tuning of the regularization parameters. Under assumptions on the noise probability distribution, Stein-based approaches provide unbiased estimator of the quadratic risk. The Generalized Stein Unbiased Risk Estimator is revisited to handle correlated Gaussian noise without requiring to invert the covariance matrix. Then, in order to avoid expansive grid search, it is necessary to design algorithmic scheme minimizing the quadratic risk with respect to regularization parameters. This work extends the Stein's Unbiased GrAdient estimator of the Risk of Deledalle et al. to the case of correlated Gaussian noise, deriving a general automatic tuning of regularization parameters. First, the theoretical asymptotic unbiasedness of the gradient estimator is demonstrated in the case of general correlated Gaussian noise. Then, the proposed parameter selection strategy is particularized to fractal texture segmentation, where problem formulation naturally entails inter-scale and spatially correlated noise. Numerical assessment is provided, as well as discussion of the practical issues.