论文标题

通过自主量子误差校正保护骨标式

Protecting a Bosonic Qubit with Autonomous Quantum Error Correction

论文作者

Gertler, Jeffrey M., Baker, Brian, Li, Juliang, Shirol, Shruti, Koch, Jens, Wang, Chen

论文摘要

要从脆弱的物理量子台上构建通用量子计算机,有效实施量子误差校正(QEC)是必不可少的要求和核心挑战。 QEC的现有演示基于离散错误综合征测量和自适应恢复操作的时间表。这些活跃的例程是硬件密集型,容易引入和传播错误,并希望在大型量子计算机中消耗绝大多数处理能力。原则上,QEC可以通过在量子系统内定制耗散来自主,连续地实现QEC,但是到目前为止,该策略仍然具有挑战性。在这里,我们在超导腔的Schrödinger猫样的多光子状态中编码一个逻辑量子,并演示了一个直接稳定误差综合征操作员的纠正耗散过程:光子数量奇偶校验。该被动协议仅使用连续波控制场实施,实现了针对单光子损耗的自主校正,并使多光子量子器的相干时间提高了两个以上。值得注意的是,与先前的QEC演示所需的技术成熟相比,QEC既不具有高保真读数也没有快速的数字反馈。我们的实验与其他误差抑制和相位稳定技术兼容,建议在未来的量子计算体系结构中,储层工程是一种资源有效QEC的替代方案或补充。

To build a universal quantum computer from fragile physical qubits, effective implementation of quantum error correction (QEC) is an essential requirement and a central challenge. Existing demonstrations of QEC are based on a schedule of discrete error syndrome measurements and adaptive recovery operations. These active routines are hardware intensive, prone to introducing and propagating errors, and expected to consume a vast majority of the processing power in a large-scale quantum computer. In principle, QEC can be realized autonomously and continuously by tailoring dissipation within the quantum system, but this strategy has remained challenging so far. Here we encode a logical qubit in Schrödinger cat-like multiphoton states of a superconducting cavity, and demonstrate a corrective dissipation process that directly stabilizes an error syndrome operator: the photon number parity. Implemented with continuous-wave control fields only, this passive protocol realizes autonomous correction against single-photon loss and boosts the coherence time of the multiphoton qubit by over a factor of two. Notably, QEC is realized in a modest hardware setup with neither high-fidelity readout nor fast digital feedback, in contrast to the technological sophistication required for prior QEC demonstrations. Compatible with other error suppression and phase stabilization techniques, our experiment suggests reservoir engineering as a resource-efficient alternative or supplement to active QEC in future quantum computing architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源