论文标题
在有限大小的su-schrieffer链中探测拓扑受保护的运输
Probing topological protected transport in finite-sized Su-Schrieffer-Heeger chains
论文作者
论文摘要
为了传输具有拓扑保护的信息,我们在实验上揭示并证明了特征长度$ l_c $的存在,以运输长度为运输长度,在一维su-schrieffer(ssh)链中的边缘状态的批量大小。尽管相应的波函数振幅呈指数衰减,其特征是渗透深度$ξ$,但即使晶格大小$ l $远大于渗透深度,即$ξ\ ll ll l \ le \ le l_c $,两个边缘之间的传输仍然可能。由于有限大小的系统中的非零耦合能,因此受支持的SSH边缘状态在两端并未完全隔离,从而使波浪定位突然变化,这是通过反向参与率与晶格大小的。为了将这种非指数缩放因子验证到系统尺寸,我们以可控的跳高强度实施了一系列分裂环谐振器及其互补的谐振器。通过对具有脉冲激发的非通风拓扑边缘状态的传输光谱进行对组速度的测量值,可以直接观察到两个边缘状态之间的传输速度,晶格数量高达$ 20 $。沿着采用拓扑途径保护光学信息,我们的实验演示为利用光子拓扑设备提供了关键指南。
In order to transport information with topological protection, we reveal and demonstrate experimentally the existence of a characteristic length $L_c$, coined as the transport length, in the bulk size for edge states in one-dimensional Su-Schrieffer-Heeger (SSH) chains. In spite of the corresponding wavefunction amplitude decays exponentially, characterized by the penetration depth $ξ$, the transport between two edge states remains possible even when the lattice size $L$ is much larger than the penetration depth, i.e., $ξ\ll L \le L_c$. Due to the non-zero coupling energy in a finite-size system, the supported SSH edge states are not completely isolated at the two ends, giving an abrupt change in the wave localization, manifested through the inverse participation ratio to the lattice size. To verify such a non-exponential scaling factor to the system size, we implement a chain of split-ring resonators and their complementary ones with controllable hopping strengths. By performing the measurements on the group velocity from the transmission spectroscopy of non-trivially topological edge states with pulse excitations, the transport velocity between two edge states is directly observed with the number of lattices up to $20$. Along the route to harness topology to protect optical information, our experimental demonstrations provide a crucial guideline for utilizing photonic topological devices.