论文标题
马尔可夫分支过程的跳跃特性
The jumping properties of Markov branching processes
论文作者
论文摘要
众所周知,0是分支系统的吸收状态。系统中的每个粒子都会随机长时间,并在其死亡时给出随机数量的新粒子。当系统没有粒子时,它会停止。本文致力于研究固定范围交叉数字,直到任何时间t。此类过程的固定范围交叉数的关节概率分布,直到使用新方法获得时间t。特别是,直到时间t,给出了马尔可夫分支过程的总死亡人数的概率分布。
It is well-known that 0 is the absorbing state for a branching system. Each particle in the system lives a random long time and gives a random number of new particles at its death time. It stops when the system has no particle. This paper is devoted to studying the fixed range crossing numbers until any time t. The joint probability distribution of fixed range crossing numbers of such processes until time t is obtained by using a new method. In particular, the probability distribution of total death number is given for Markov branching processes until time t.