论文标题
反自我双阳米尔斯方程的新孤子解决方案
New Soliton Solutions of Anti-Self-Dual Yang-Mills equations
论文作者
论文摘要
我们研究了$ g = g = gl(2)$在四维空间中的抗二重用扬米尔斯方程的确切孤子解,其中具有欧几里得,minkowski和ultranyperbolic签名,并构建了特殊的单soliton解决方案,其动作密度tr $ f_ {μ{μ{μ才能实现。通过明确计算实值的动作密度,这些孤子被证明是四个维度的新型域壁类型。我们的结果是Nimmo,Gilson和Ohta开发的Darboux转换的成功应用。更令人惊讶的是,这些动作密度在四维空间上的整合被认为不是无穷大,而是零。此外,在每个真实空间上还讨论了量规组$ g = u(2)$是否可以在我们的sution Solutions上实现。
We study exact soliton solutions of anti-self-dual Yang-Mills equations for $G =GL(2)$ in four-dimensional spaces with the Euclidean, Minkowski and Ultrahyperbolic signatures and construct special kinds of one-soliton solutions whose action density Tr$F_{μν}F^{μν}$ can be real-valued. These solitons are shown to be new type of domain walls in four dimension by explicit calculation of the real-valued action density. Our results are successful applications of the Darboux transformation developed by Nimmo, Gilson and Ohta. More surprisingly, integration of these action densities over the four-dimensional spaces are suggested to be not infinity but zero. Furthermore, whether gauge group $G= U(2)$ can be realized on our solition solutions or not is also discussed on each real space.