论文标题

各向同性和对数凸线多项式:基质碱基的加速抽样和高精度计数

Isotropy and Log-Concave Polynomials: Accelerated Sampling and High-Precision Counting of Matroid Bases

论文作者

Anari, Nima, Dereziński, Michał

论文摘要

我们为离散集分布定义了各向同性的概念。如果$μ$是地面集$ [n] $的子集$ s $的分配,我们说如果$ p [e \ in s] $对于[n] $中的所有$ e \ en n in SLO $ p [e \ in s] $相同。我们设计了一种新的近似采样算法,该算法利用各向同性的分布$μ$,这些分布$μ$具有log-conconcave生成多项式;该类包括确定点过程,强烈的瑞利分布以及矩形基础上的均匀分布。我们表明,当$μ$大约处于各向同性位置时,我们算法的运行时间在多个身份取决于集合$ s $的大小,而仅在$ n $上进行对数。当$ n $远大于$ s $的尺寸时,这比以前的算法要快得多,甚至可以在$ n $中进行sublinear。然后,我们展示了如何将非各向同性$μ$转换为等效的各向同性形式,并具有多项式时间预处理步骤,从而加速了随后的采样时间。促使我们的算法的主要新成分是一类负面依赖性不平等,可能具有独立利益。 作为我们结果的应用,我们展示了如何在$ n $元素的地面集$ n $ ements的基础上计数$ n $元素的基础,达到了$ 1+ε$的时间$ o(((n+1/ε^2)\ cdot poly(k,\ log log n))$。这是第一个在固定等级$ k $的几乎线性时间内运行的算法,并实现了多个偏差较低近似误差。

We define a notion of isotropy for discrete set distributions. If $μ$ is a distribution over subsets $S$ of a ground set $[n]$, we say that $μ$ is in isotropic position if $P[e \in S]$ is the same for all $e\in [n]$. We design a new approximate sampling algorithm that leverages isotropy for the class of distributions $μ$ that have a log-concave generating polynomial; this class includes determinantal point processes, strongly Rayleigh distributions, and uniform distributions over matroid bases. We show that when $μ$ is in approximately isotropic position, the running time of our algorithm depends polynomially on the size of the set $S$, and only logarithmically on $n$. When $n$ is much larger than the size of $S$, this is significantly faster than prior algorithms, and can even be sublinear in $n$. We then show how to transform a non-isotropic $μ$ into an equivalent approximately isotropic form with a polynomial-time preprocessing step, accelerating subsequent sampling times. The main new ingredient enabling our algorithms is a class of negative dependence inequalities that may be of independent interest. As an application of our results, we show how to approximately count bases of a matroid of rank $k$ over a ground set of $n$ elements to within a factor of $1+ε$ in time $ O((n+1/ε^2)\cdot poly(k, \log n))$. This is the first algorithm that runs in nearly linear time for fixed rank $k$, and achieves an inverse polynomially low approximation error.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源