论文标题

基于形状估计网络的结肠镜跟踪方法

Colonoscope tracking method based on shape estimation network

论文作者

Oda, Masahiro, Roth, Holger R., Kitasaka, Takayuki, Furukawa, Kazuhiro, Miyahara, Ryoji, Hirooka, Yoshiki, Navab, Nassir, Mori, Kensaku

论文摘要

本文提出了一种使用结肠形状估计方法的结肠镜跟踪方法。 CT结肠造影用作一种侵入性的结肠诊断方法。如果发现结肠息肉或早期癌症,则在结肠镜检查中将其去除。在结肠镜检查中,了解结肠中的结肠镜在哪里很难。结肠镜导航系统需要减少息肉的忽视。我们为导航系统提出了一种结肠镜跟踪方法。先前的结肠镜跟踪方法引起了较大的跟踪误差,因为它们在结肠镜插入过程中不考虑结肠的变形。我们利用形状估计网络(SEN),该网络估计结肠镜插入期间的结肠形状变形。 SEN是一个包含长期记忆(LSTM)层的神经网络。为了执行适合实际临床状况的结肠形状估计,我们使用医生结肠镜操作中获得的数据训练了SEN。提出的跟踪方法使用SEN的估计结果将结肠镜尖端的位置映射到结肠中的位置。我们在幻影研究中评估了所提出的方法。我们确认,跟踪所提出的方法的错误足以在上升,横向和下降结肠中执行导航。

This paper presents a colonoscope tracking method utilizing a colon shape estimation method. CT colonography is used as a less-invasive colon diagnosis method. If colonic polyps or early-stage cancers are found, they are removed in a colonoscopic examination. In the colonoscopic examination, understanding where the colonoscope running in the colon is difficult. A colonoscope navigation system is necessary to reduce overlooking of polyps. We propose a colonoscope tracking method for navigation systems. Previous colonoscope tracking methods caused large tracking errors because they do not consider deformations of the colon during colonoscope insertions. We utilize the shape estimation network (SEN), which estimates deformed colon shape during colonoscope insertions. The SEN is a neural network containing long short-term memory (LSTM) layer. To perform colon shape estimation suitable to the real clinical situation, we trained the SEN using data obtained during colonoscope operations of physicians. The proposed tracking method performs mapping of the colonoscope tip position to a position in the colon using estimation results of the SEN. We evaluated the proposed method in a phantom study. We confirmed that tracking errors of the proposed method was enough small to perform navigation in the ascending, transverse, and descending colons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源