论文标题
部分可观测时空混沌系统的无模型预测
Higher chromatic Thom spectra via unstable homotopy theory
论文作者
论文摘要
我们调查了旧猜想在不稳定同义理论中的含义,与Cohen-Moore-Neisendorfer定理有关,以及关于$ \ Mathbf {e} _ {2} $的猜想 - 某些thom spectra的拓扑topological hochschill sopological hochschill sology s of thom spectra(表示$ a $ a $,$ b $,$ b $,$ t $ t $ t(n)$ t(n)$ t(p^n)$(p^n)$ cave(x)(x)(x(x))我们表明,这些猜想暗示$ \ mathrm {mspin} \ to \ mathrm {ko} $和$ \ mathrm {mstring} \ to \ mathrm {tmf} $ ADGIT SPECTRUM-LEVEL申请。通过概括霍普金斯和玛霍瓦尔德的定理,构建$ \ mathrm {h} \ mathbf {f} _p $作为thom spectrum,以构建$ \ mathrm {bp} \ langle {n-1} \ rangle {n-1} \ rangle $,$ \ mathrm { Thom Spectra(尽管超过$ t(n)$,$ a $和$ b $,而不是球体)。 $ \ mathrm {bp} \ langle {n-1} \ rangle $,$ \ mathrm {ko} $和$ \ mathrm {tmf} $的这种解释提供了对形式的木材等价的新观点的新观点。在不稳定同型理论中的某些EHP序列。 $ \ mathrm {bp} \ langle {n-1} \ rangle $的构造也提供了nilpotence定理的不同镜头。最后,我们证明了$ c_2 $ equivariant的构造类似物,描述了$ \ useverline {\ mathrm {h} \ mathbf {z}} $作为thom频谱。
We investigate implications of an old conjecture in unstable homotopy theory related to the Cohen-Moore-Neisendorfer theorem and a conjecture about the $\mathbf{E}_{2}$-topological Hochschild cohomology of certain Thom spectra (denoted $A$, $B$, and $T(n)$) related to Ravenel's $X(p^n)$. We show that these conjectures imply that the orientations $\mathrm{MSpin}\to \mathrm{ko}$ and $\mathrm{MString}\to \mathrm{tmf}$ admit spectrum-level splittings. This is shown by generalizing a theorem of Hopkins and Mahowald, which constructs $\mathrm{H}\mathbf{F}_p$ as a Thom spectrum, to construct $\mathrm{BP}\langle{n-1}\rangle$, $\mathrm{ko}$, and $\mathrm{tmf}$ as Thom spectra (albeit over $T(n)$, $A$, and $B$ respectively, and not over the sphere). This interpretation of $\mathrm{BP}\langle{n-1}\rangle$, $\mathrm{ko}$, and $\mathrm{tmf}$ offers a new perspective on Wood equivalences of the form $\mathrm{bo} \wedge Cη\simeq \mathrm{bu}$: they are related to the existence of certain EHP sequences in unstable homotopy theory. This construction of $\mathrm{BP}\langle{n-1}\rangle$ also provides a different lens on the nilpotence theorem. Finally, we prove a $C_2$-equivariant analogue of our construction, describing $\underline{\mathrm{H}\mathbf{Z}}$ as a Thom spectrum.