论文标题

在图八节补充空间和非传播的Anosov流向Franks-Williams歧管上的非传播的Anosov分类中分类扩展的吸引子

Classifying expanding attractors on figure eight knot complement space and non-transitive Anosov flows on Franks-Williams manifold

论文作者

Yang, Jiagang, Yu, Bin

论文摘要

图8结空间($ n_0 $)的路径闭合支持自然的DA(源自Anosov)扩展的吸引子。弗兰克斯·威廉姆斯(Franks-Williams)使用这种吸引子,在歧管$ m_0 $上构建了第一个非传递性anosov流的例子,该示例是通过沿其边界的身份图粘合两个$ n_0 $的$ n_0 $获得的,由弗兰克斯·威廉姆斯(Franks-Williams)命名。在本文中,我们的主要目标是对$ n_0 $的扩展吸引子进行分类,并在$ m_0 $上流动非传递性Anosov。我们证明,直到轨道等效性,DA扩展的吸引子是由$ N_0 $支持的独特扩展吸引子,而Franks和Williams构建的非交易性Anosov流是$ M_0 $ $ M_0 $的独特非交易性Anosov流。此外,还讨论了更多的一般情况。特别是,我们将非传递性的Anosov完全分类为一个无限多种环形的$ 3 $ manifolds的家族,并带有两个双曲线作品,通过通过任何粘合的同构粘合$ n_0 $粘贴了两份$ n_0 $。

The path closure of figure eight knot complement space, $N_0$, supports a natural DA (derived from Anosov) expanding attractor. Using this attractor, Franks-Williams constructed the first example of non-transitive Anosov flow on the manifold $M_0$ obtained by gluing two copies of $N_0$ through identity map along their boundaries, named by Franks-Williams manifold. In this paper, our main goal is to classify expanding attractors on $N_0$ and non-transitive Anosov flows on $M_0$. We prove that, up to orbit-equivalence, the DA expanding attractor is the unique expanding attractor supported by $N_0$, and the non-transitive Anosov flow constructed by Franks and Williams is the unique non-transitive Anosov flow admitted by $M_0$. Moreover, more general cases are also discussed. In particular, we completely classify non-transitive Anosov flows on a family of infinitely many toroidal $3$-manifolds with two hyperbolic pieces, obtained by gluing two copies of $N_0$ through any gluing homeomorphism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源