论文标题
对三环偏光运算符矩阵元素$ a_ {gg,q}^{(3)} $的两种质量贡献
The Two-mass Contribution to the Three-Loop Polarized Operator Matrix Element $A_{gg,Q}^{(3)}$
论文作者
论文摘要
我们计算对极化大量运算符矩阵元素$ a_ {gg,q}^{(3)} $在量子上的强耦合常数$α_s$分析中的两种贡献。这些校正是可变风味数字方案中匹配关系的重要成分,以及在渐近状态中的深弹性散射中的威尔逊系数计算$ q^2 \ gg m_c^2,m_b^2 $。分析结果以$ n $空间中的嵌套谐波,广义谐波,环形和二项式总和表示,以及涉及$ z $空间中的正方根有价值的参数的迭代积分,作为质量比的功能。提出了数值结果。计算新的两级迭代积分。
We compute the two-mass contributions to the polarized massive operator matrix element $A_{gg,Q}^{(3)}$ at third order in the strong coupling constant $α_s$ in Quantum Chromodynamics analytically. These corrections are important ingredients for the matching relations in the variable flavor number scheme and for the calculation of Wilson coefficients in deep--inelastic scattering in the asymptotic regime $Q^2 \gg m_c^2, m_b^2$. The analytic result is expressed in terms of nested harmonic, generalized harmonic, cyclotomic and binomial sums in $N$-space and by iterated integrals involving square-root valued arguments in $z$ space, as functions of the mass ratio. Numerical results are presented. New two--scale iterative integrals are calculated.