论文标题
Bohr的现象用于准分子的类别和$ K $ -Quasiregular Harmonic映射
Bohr's phenomenon for the classes of Quasi-subordination and $K$-quasiregular harmonic mappings
论文作者
论文摘要
在本文中,我们研究了$ k $ -quasiregular sense sense sense harmonic映射的BOHR半径$ f = h+\ edlline {g} $中的单位磁盘$ \ mathbb {d} $,以使翻译后的分析部分$ h(z)-h(z)-h(z)$是quasi-sububortion quasi-subublection quasi-subortion to quasi-subortion to quasi-subortion to quasi-subortion for某些分析功能。本文的主要目的是扩展并建立刘和庞尼萨米\ cite {lp2019}的四个最近定理的敏锐版本,尤其是我们肯定地解决了他们提出的两个猜想。此外,我们建立了两个精致版本的Bohr不平等现象,并确定与准征服相关的分析功能的衍生物的BOHR半径。
In this paper, we investigate the Bohr radius for $K$-quasiregular sense-preserving harmonic mappings $f=h+\overline{g}$ in the unit disk $\mathbb{D}$ such that the translated analytic part $h(z)-h(0)$ is quasi-subordinate to some analytic function. The main aim of this article is to extend and to establish sharp versions of four recent theorems by Liu and Ponnusamy \cite{LP2019} and, in particular, we settle affirmatively the two conjectures proposed by them. Furthermore, we establish two refined versions of Bohr's inequalities and determine the Bohr radius for the derivatives of analytic functions associated with quasi-subordination.