论文标题

高光谱图像的生物学上可解释的两阶段深神经网络(BIT-DNN)

A Biologically Interpretable Two-stage Deep Neural Network (BIT-DNN) For Vegetation Recognition From Hyperspectral Imagery

论文作者

Shi, Yue, Han, Liangxiu, Huang, Wenjiang, Chang, Sheng, Dong, Yingying, Dancey, Darren, Han, Lianghao

论文摘要

基于光谱空间的深度学习模型最近已被证明对各种地球监测应用(例如土地覆盖分类和农业监测)的高光谱图像(HSI)分类有效。但是,由于“黑盒”模型表示的性质,如何解释和解释学习过程和模型决策,尤其是对于植被分类,仍然是一个开放的挑战。这项研究提出了一种新颖的可解释的深度学习模型 - 一种可解释的两阶段深度神经网络(BIT-DNN),通过将基于光谱特征转化的先验知识(即生物物理和生化属性及其目标实体的层次结构)纳入基于高准确性和基于高度的HESI的识别型框架。提出的模型引入了一个两阶段的特征学习过程:在第一阶段,增强的可解释特征块提取了与目标实体的生物物理和生化属性相关的低级光谱特征;在第二阶段,可解释的胶囊块提取物并封装了这些目标实体的生物物理和生化属性的层次结构的高级关节光谱特征,从而为模型提供了改进的分类性能,并具有固有的可解释性,并具有降低的计算复杂性。我们已经使用四个真正的HSI数据集对模型进行了测试和评估,以完成四个单独的任务(即植物物种分类,土地覆盖分类,城市场景识别和农作物疾病识别任务)。提出的模型已与五个最先进的深度学习模型进行了比较。

Spectral-spatial based deep learning models have recently proven to be effective in hyperspectral image (HSI) classification for various earth monitoring applications such as land cover classification and agricultural monitoring. However, due to the nature of "black-box" model representation, how to explain and interpret the learning process and the model decision, especially for vegetation classification, remains an open challenge. This study proposes a novel interpretable deep learning model -- a biologically interpretable two-stage deep neural network (BIT-DNN), by incorporating the prior-knowledge (i.e. biophysical and biochemical attributes and their hierarchical structures of target entities) based spectral-spatial feature transformation into the proposed framework, capable of achieving both high accuracy and interpretability on HSI based classification tasks. The proposed model introduces a two-stage feature learning process: in the first stage, an enhanced interpretable feature block extracts the low-level spectral features associated with the biophysical and biochemical attributes of target entities; and in the second stage, an interpretable capsule block extracts and encapsulates the high-level joint spectral-spatial features representing the hierarchical structure of biophysical and biochemical attributes of these target entities, which provides the model an improved performance on classification and intrinsic interpretability with reduced computational complexity. We have tested and evaluated the model using four real HSI datasets for four separate tasks (i.e. plant species classification, land cover classification, urban scene recognition, and crop disease recognition tasks). The proposed model has been compared with five state-of-the-art deep learning models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源