论文标题
基于知识图的主动对话生成,并改善了元学习
Knowledge-graph based Proactive Dialogue Generation with Improved Meta-Learning
论文作者
论文摘要
基于图形的对话系统可以通过使用先验信息(例如三重属性或图路径)来缩小知识候选者,以产生信息和多样化的响应。但是,大多数当前的知识图(kg)涵盖了不完整的域特异性知识。为了克服这一缺点,我们提出了一种基于知识图的主动对话生成模型(KGDG),该模型具有三个组件,改进的模型 - 静态的元学习算法(MAML),嵌入知识三胞胎中的知识选择以及知识知识意识到主动的响应生成器。对于嵌入和选择知识的三胞胎,我们将其作为嵌入句子的问题来更好地捕获语义信息。我们改进的MAML算法能够从有限数量的知识图中学习一般特征,这些知识图也可以迅速使用看不见的知识三胞胎来适应对话生成。广泛的实验是在知识意识对话数据集(DUCONV)上进行的。结果表明,KGDG可以快速和良好地适应基于图形的对话生成,并且优于最先进的基线。
Knowledge graph-based dialogue systems can narrow down knowledge candidates for generating informative and diverse responses with the use of prior information, e.g., triple attributes or graph paths. However, most current knowledge graph (KG) cover incomplete domain-specific knowledge. To overcome this drawback, we propose a knowledge graph based proactive dialogue generation model (KgDg) with three components, improved model-agnostic meta-learning algorithm (MAML), knowledge selection in knowledge triplets embedding, and knowledge aware proactive response generator. For knowledge triplets embedding and selection, we formulate it as a problem of sentence embedding to better capture semantic information. Our improved MAML algorithm is capable of learning general features from a limited number of knowledge graphs, which can also quickly adapt to dialogue generation with unseen knowledge triplets. Extensive experiments are conducted on a knowledge aware dialogue dataset (DuConv). The results show that KgDg adapts both fast and well to knowledge graph-based dialogue generation and outperforms state-of-the-art baseline.