论文标题

Trigan:多源域适应的图像到图像翻译

TriGAN: Image-to-Image Translation for Multi-Source Domain Adaptation

论文作者

Roy, Subhankar, Siarohin, Aliaksandr, Sangineto, Enver, Sebe, Nicu, Ricci, Elisa

论文摘要

大多数域的适应方法都考虑将知识从单个源数据集转移到目标域的问题。但是,在实际应用中,我们通常可以访问多个来源。在本文中,我们提出了基于生成对抗网络的多源域适应(MSDA)的第一种方法。我们的方法的灵感来自观察到给定图像的外观取决于三个因素:域,样式(以低级特征变化为特征)和内容。因此,我们建议将图像功能投射到仅保留内容的依赖性的空间上,然后使用目标域和样式将此不变的表示形式重新投影到像素空间。这样,可以生成新的标记图像,用于训练最终目标分类器。我们使用常见的MSDA基准测试我们的方法,表明它的表现优于最先进的方法。

Most domain adaptation methods consider the problem of transferring knowledge to the target domain from a single source dataset. However, in practical applications, we typically have access to multiple sources. In this paper we propose the first approach for Multi-Source Domain Adaptation (MSDA) based on Generative Adversarial Networks. Our method is inspired by the observation that the appearance of a given image depends on three factors: the domain, the style (characterized in terms of low-level features variations) and the content. For this reason we propose to project the image features onto a space where only the dependence from the content is kept, and then re-project this invariant representation onto the pixel space using the target domain and style. In this way, new labeled images can be generated which are used to train a final target classifier. We test our approach using common MSDA benchmarks, showing that it outperforms state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源