论文标题

一个可信赖的招聘过程,用于大规模社交物业的空间移动众包

A Trustworthy Recruitment Process for Spatial Mobile Crowdsourcing in Large-scale Social IoT

论文作者

Khanfor, Abdullah, Hamrouni, Aymen, Ghazzai, Hakim, Yang, Ye, Massoud, Yehia

论文摘要

可以通过利用社交互联网(SIOT)执行空间任务的能力来利用空间移动众包(SMC)。通常,在SMC中,任务请求者旨在招募一部分IoT设备,并委托他们前往任务位置。但是,由于物联网网络及其多元化设备的指数增加(例如,多个品牌,不同的通信渠道等),招募适当的设备/工人正在成为一项艰巨的任务。为此,在本文中,我们使用自动化的Siot服务发现开发了SMCS平台的招聘过程,以选择满足请求者要求的值得信赖的工人。我们目的的方法主要包括两个阶段:1)使用Louvain社区检测算法(CD)应用于Siot关系图,旨在将工人的搜索空间减少到潜在可信赖的候选人的一部分。接下来,2)使用整数线性程序(ILP)来确定选定设备/工人的最终集选择阶段。 ILP最大化工人效率指标,其中包括招聘IoT设备的技能/规格水平,招聘成本和可信度水平。选定的实验可以使用现实世界数据集分析提出的CD-ILP算法的性能,并与现有的随机算法相比,在提供有效的募集策略方面表现出了优越性。

Spatial Mobile Crowdsourcing (SMCS) can be leveraged by exploiting the capabilities of the Social Internet-of-Things (SIoT) to execute spatial tasks. Typically, in SMCS, a task requester aims to recruit a subset of IoT devices and commission them to travel to the task location. However, because of the exponential increase of IoT networks and their diversified devices (e.g., multiple brands, different communication channels, etc.), recruiting the appropriate devices/workers is becoming a challenging task. To this end, in this paper, we develop a recruitment process for SMCS platforms using automated SIoT service discovery to select trustworthy workers satisfying the requester requirements. The method we purpose includes mainly two stages: 1) a worker filtering stage, aiming at reducing the workers' search space to a subset of potential trustworthy candidates using the Louvain community detection algorithm (CD) applied to SIoT relation graphs. Next, 2) a selection process stage that uses an Integer Linear Program (ILP) to determine the final set of selected devices/workers. The ILP maximizes a worker efficiency metric incorporating the skills/specs level, recruitment cost, and trustworthiness level of the recruited IoT devices. Selected experiments analyze the performance of the proposed CD-ILP algorithm using a real-world dataset and show its superiority in providing an effective recruitment strategy compared to an existing stochastic algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源