论文标题

在贵族僵硬的气体中可压缩流动

Compressible flow in a Noble-Abel Stiffened-Gas fluid

论文作者

Radulescu, Matei Ioan

论文摘要

尽管可压缩的流程理论依赖于完美的气体模型作为过去一个世纪的主力,但密集的气体,固体和液体的可压缩动力学依赖于许多状态的复杂方程,从而对解决问题的流体动力学方面产生了有限的见解。最近,由于其能够对培养基的热和可压缩性方面进行建模,LeMétayer和Saurel研究了一个简单而有希望的状态方程。它是状态和僵硬的气体模型的杂种,标记为状态的贵族僵硬的气体(NASG)方程。在目前的工作中,我们得出了封闭形式的分析框架,用于在由NASG状态方程近似的介质中建模可压缩流。我们得出了等entrope,音速,等式指数,特征描述中的riemann变量的表达方式,以及冲击,deflagration和Destonations的跳跃条件。我们还通过解决Riemann问题来说明其有用性。封闭式解决方案以透明的方式概括了完美气体的良好模型,突出了介质可压缩性的作用。

While compressible flow theory has relied on the perfect gas model as its workhorse for the past century, compressible dynamics in dense gases, solids and liquids have relied on many complex equations of state, yielding limited insight on the hydrodynamic aspect of the problems solved. Recently, Le Métayer and Saurel studied a simple yet promising equation of state owing to its ability to model both the thermal and compressibility aspects of the medium. It is a hybrid of the Noble-Abel equation of state and the stiffened gas model, labeled the Noble-Able Stiffened Gas (NASG) equation of state. In the present work, we derive the closed form analytical framework for modelling compressible flow in a medium approximated by the NASG equations of state. We derive the expressions for the isentrope, sound speed, the isentropic exponent, Riemann variables in the characteristic description, and jump conditions for shocks, deflagrations and detonations. We also illustrate the usefulness by addressing the Riemann problem. The closed form solutions generalize in a transparent way the well-established models for a perfect gas, highlighting the role of the medium's compressibility.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源