论文标题
$(-1,0,1)$ - 向量的交点定理
Intersection theorems for $(-1,0,1)$-vectors
论文作者
论文摘要
在本文中,我们调查了$ \ {0,\ pm 1 \}^n $的eRD \ h os - ko--ko- rado type定理,其固定数字为$+1 $'s和$ -1 $。标量产品扮演着相交大小的作用。特别是,我们对避免最小可能的标量产品的媒介家族的最大尺寸提高了早期的结果。我们还为没有负标量产品的家庭的最大尺寸获得了确切的结果。
In this paper, we investigate Erd\H os--Ko--Rado type theorems for families of vectors from $\{0,\pm 1\}^n$ with fixed numbers of $+1$'s and $-1$'s. Scalar product plays the role of intersection size. In particular, we sharpen our earlier result on the largest size of a family of such vectors that avoids the smallest possible scalar product. We also obtain an exact result for the largest size of a family with no negative scalar products.